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Abstract. This paper proposes a method for computing steady wake flows of an inviscid fluid over a three-
dimensional body with polygonal cross-section and arbitrary plan-form. The method is based on the technique
of matched asymptotic expansions, assuming a large "aspect ratio". The far-field velocity potential is given
essentially by a lifting line and a line source. The near-field, treated as two-dimensional, is solved by a suitable
version of Tulin's double spiral vortex model which incorporates a downwash correction and an underpressure
in the near-wake. The latter is related to the Reynolds number of the corresponding real flow using recent results
by Tulin and Hsu and the authors. Numerical results for a few prototype problems (flat-plate airfoil with
separation at both the leading edge and the upper surface, flat-plate wing with full or partial spoiler) are presented.
The method can be efficiently implemented on a parallel computer.

1. Introduction

Flows past a three-dimensional body with separation and wakes are of considerable interest
and importance in engineering design and analysis. While viscous effects are essentially
involved in these phenomena there are many problems in which inviscid models are
appropriate since separation occurs at sharp edges and is not sensitive to the Reynolds
number. We consider here separated flow past both bluff bodies and lifting surfaces as a
singular perturbation problem, the perturbation parameter being related to the "aspect
ratio" of the body. The procedure is that of matched asymptotic expansions as has been used
earlier by Van Dyke [1] for unseparated flow, Furuya [2] for hydrofoils below a free surface,
Sclavounos [3] and Ahmadi and Widnall [4] for unsteady unseparated flows. The inner
solution (near-field) is a version of the Tulin double spiral vortex model for two-dimensional
wakes, and the outer solution (far-field) is a version of Prandtl's lifting line which includes
a line source distribution for a bluff body. The Tulin flows are computed using the efficient
algorithm recently introduced by Elcrat and Trefethen [5] for Helmholtz-Kirchhoff flows,
and the matching uses expressions for the downwash and circulation distribution which are
interpolated by Tchebychev polynomials. The matching is accomplished by an iteration
which converges rapidly if an appropriate relaxation parameter is used. Related problems
and methods of solution are reviewed in Street's paper [6].

We are considering bodies with polygonal cross-sections and arbitrary planform in a flow
which is parallel at infinity. The fluid is inviscid and incompressible, and the density, e0, and
speed at infinity, q,, are normalized to one. We choose a coordinate system x,, x2, x3, so
that the flow at infinity is in the x, direction and the body contains the segment on the x3
axis between - I1 and 1 and has span equal to 2. The geometry is then specified by giving
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the polygonal sections as functions of x 3. We denote by (x3) a representative dimension of
the section which can be used to define the "aspect ratio". For example, if the body is a
flat-plate wing, 1(x 3 ) is the chord. We restrict our attention throughout the paper to spanwise
symmetric bodies, so that (x3) = I(-x 3).

We choose E = 1(0)/2 as our perturbation parameter. We are taking e small so that the
"aspect ratio" is large (for a flat rectangular wing e = (AR)-', with aspect ratio AR defined
as usual). The outer solution, valid for E small, will be a lifting line for lifting bodies [1, 2],
and a lifting line plus a line source for bluff bodies (Section 3). The inner coordinates are
Z = x 3, X = Xl /, Y = X2 /, and the inner solution will be given by a free-streamline wake
model which uses the complex variable z = X + i Y (Section 2). If the velocity potential in
the outer solution is +(x,, x 2, x3) then we have the relation D(X, Y, Z) = E-I (Xl, X2, X3),
where (D is the velocity potential for the inner solution in the Z-section [2].

2. Inner solution

The two-dimensional inner solution in the Z-section is a modified version of the Tulin double
spiral vortex model [7] which we have introduced in [8]. The relevant flow quantities are given
in terms of a complex parameter x which varies over the upper half of an auxiliary plane.
The polygonal obstacle section corresponds to - 1 < x < 1, the spiral vortices to xs (1, oo),
Xs, e (- co, - 1), and the points x = oo and z = oo correspond. The vertices of the
polygon are denoted by {Xk, 1 x e , (x) is the complex velocity, w the complex potential,
dw/dz = , and co = In (). We have then, keeping the same notations as in [8]:

w(x) = (x - x*)2 W/2, dz/dx = W[(x)]-'(x - x,) = We-()(x - x,) (1)

where W is a positive constant (or order e) and x, is the parameter corresponding to the
stagnation point on the obstacle. If the near-wake free-streamline speed q, = (1 + )1/2 and
Xs, x,, are fixed, the parameters {k}, Ware determined in terms of the side lengths of the
polygon by solving the associated system of equations [8, 5]. Here the condition 4(oc) = 1
must be replaced by (oo) = exp (icxD) (see Section 3) where LD is the downwash angle, and
this implies

x -cos rn + D- I k cos'(--xk) - In (q,) In + (X2 1)1/ 

(2)

where k is the angle that the k-th side makes with the horizontal and Pfk = k+ - k. (It
should be remembered that all of these parameters depend on Z). Formula (2) replaces
equation (9) of [8].

From equations (2)-(11) of [8] we find that the asymptotic expansion

C(X) = + IX - + CO2X - 2 + O(x - 3 )

holds as x -* oo, where coo = iaD, cot and o02 are purely imaginary quantities given below.
If we integrate the expression for dz/dx from x,, we obtain

z = Wexp (-iD) [ 2 - *x - ('2*-2 I ) n (x)] + 0(1)
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where co* = co + x, o2* = o2 - w,x,. Since

x = (2w/W)I12 + x* = (2w/W) 1/ 2 + 0(1),

we have

z = exp (-iDr)[w - ol(2Ww) 1 2 - W(c* - 1() In (w)] + 0(1). (3)

Note that the treatment here is at variance with Furuya [2] because of the absence of a free
surface (cf. Birkhoff and Zarantonello [9], p. 70). As we shall see this affects the matching
in an essential way.

Inverting (3) yields

w = exp (iaD)z + [2Wexp (iaD)]1
/2ColZl/

2 + W((o 2*- )w) In (z) + 0(1)

as z - oo, where

n-I 1
a)1 = -i {(1 - x) 2 + Z ( 1

- )1/2 - -In(q) ( - 1) / (S - 1) 1/2

k=l ] i

(4)

1i ~~n-1
@2~ ~ x,(l - x2,)1/2 + ; /k~k(l -k k)1/22 k=l

- 1 In (ql) [xs(x - 1)1/2 + x,(,- 1)1/2]}, (5)

and n (n > 1) is the number of sides of the polygon (this number may vary with Z, see case
(III) of Section 5).

We obtain then the outer expansion of the inner solution

D(X, Y, Z) Re[w(z)]lz-,ion

= X cos a - Y sin ct, + Re[Az2]- A Wo2 In (X2 + 2 ) (6)

+ Wo* tan-'(Y/X),

where A = ) [2W exp (iaCD)]/2 is complex and wo,, co* are purely imaginary. Notice that
A = O(/s) as - 0.

189
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3. Outer solution and matching

Formula (6) suggests that for a low drag, lifting body we can take o, = 0, hence A = 0, and
an outer solution given by the lifting-line potential [1, 2]

b(X, X2, x 3 ) = XI -4 f_ d d {tan- x )

xtan 2 [X + X2 + (X3 - )2 ]1/2)
+ tan' 1 (7)

to second order in . The inner expansion of the outer solution then yields [1, 2]

8-£ 1 v(eX, EY, Z) = X - 7y(Z) tan-'(Y/X) - Y I, d Z d (8)
27 T~4 K - d Z -

to first order in . (The last integral is given by a Cauchy principal value.)
Matching (6) and (8), with o) = 0, we get

y(Z) = - irWo*, (9)

E '1 dy d4
otD (z) 4 Zd (10)

Notice that y = 0(8), CD = 0(82) as - 0.
Thus, taking co, = 0, we can accomplish the matching with an outer solution given by a

lifting line with circulation y(x 3), as is appropriate for a lifting body.
For a bluff body we should have o, non-zero. We need then an outer solution which

matches (6) with (1, 0, so that (6) includes both the log and the square-root terms (cf. [9],
p. 68 and ff., again). The log term can be accounted for by adding to (7) the potential of a
line distribution of sources

(XI, X2 , X3) -4 2+l [Q 2 ) (X3 4)2]1/2 ()d (11)

with density #(X3 ) on -1 1 < 3 < 1 ( = ( + )1/2). The inner expansion is

-' s(X, BY, Z) = -(Z) In (r) + f(Z, ) (12)
2xr

(to first order in ), where r = (X 2 + y2 )1/2 = /8, and (cf. [10], p. 234)

f 'd In Z) d 2(Z f(Z, ) = jI In [] - In ( - Z)d - _ l -ln d
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(+ o(2)) does not depend on X, Y (moreoverf = o(1) as e - O). Then matching the log
term in (6) with (12) gives

p(Z) = - [02 W/£].Z (13)
2

(Note that (o < 0, hence u(Z) > 0; also p = 0(1) as -+ 0).
It remains to match the term Re[Az'/2]. From the definition of A and (13) we find

2
Re[Az'/2] - [er(Z)]1/ 2 sin [ (D + tan-'(Y/X))] (14)

where caD = 0(e2). This term can be matched with an outer potential given by the harmonic
function

Ar(X1 , X2 , X3) = - £ akk - 1/2 cosh (kx 3)J 1/2(ke) sin (0/2) (15)
k=O

where O = tan - ' (x2/x,), and the ak's are coefficients of the expansion of /(Z) in a Dirichlet
series,

x/# (Z = Z ake- kz
k=O

(recall that p is nonnegative and even). Convergence of this series is guaranteed by Miintz's
theorem [11].

It is easy to verify that the inner expansion of (15) coincides to first order in with (14).
Summarizing, the outer solution for a bluff body is given by

4 = k + 0s + Or (16)

The circulation y(Z) is related to the two-dimensional lift coefficient CL(Z) = L(Z)
[Qo0q2(Z)], L(Z) the lift on the Z-section, by

y(Z) = 2l(Z)CL(Z). (17)

We also assume, following [2], the condition

y(Z) = 4(Xs, Y, Z) - (Xs,, Ys,, Z)

which modifies the spiral vortex model.
Using the expression (1) for w(x) and equation (9) we get

I W[(xs - X,) 2 - (Xs. - X*)2] = -i7rW(t*. (18)
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We need now to relate u(Z) to the drag, D(Z), on the Z-section. We fix #u by the condition
D(Z) = e8(Z), as suggested by consideration of two-dimensional flow past a Rankine body
generated by a source in a uniform stream [12]. Then, if CD(Z) = D(Z)/[1Qoq,1(Z)] is the
two-dimensional drag coefficient and c(Z) = (Z)/(O) (the normalized chord in the case of
a wing), we have

(Z ) = c(Z)CD(Z). (19)

Our final matching equation,

[c(Z)CD(Z)]'2 = [- 7r2 W/] 12 (20)

is obtained from (13) and (19). (The positive sign for the square root is chosen in order to
ensure that the free streamlines do not cross.)

For consistency we require the underpressure (coefficient)

a = (P, - Pw)/[o0
2 ]

(pw is the near-wake pressure and p, the pressure at infinity) to be constant in the three-
dimensional near wake. However, we take account of the presence of a transverse flow
velocity on the front of the body

uz = eZ [(D + 1 + ,
a

induced by the outer potential (here = E-O,(eX, Y, Z), and so on). This induced
velocity will influence the value of the two-dimensional underpressure in the Z-section. For

e Er = 0 (that is on the body seen from the far-field) we find from (8)

ala/Z = - dy/dZ (er = 0).

Analogously, from (11),

as/z = #-Z(1 _ Z2)-I/(Z).
27r

Finally (15) implies

aD,/az = -2r- 2 (er) 1 /2 sin (0/2) E kak sinh (kZ) = 0
k=O

at 0 = 0 (to first order in ). Thus the induced transverse velocity on the body is

u,= - dy/dZ + - Z(1 - Z2)-I'(Z). (21)
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Then on a Z-section the near-wake free streamline speed will be

ql(Z) = [1 + o - (Z)]1/2 (22)

If we combine the expressions (4), (5) for co,, 02 with equations (18) and (20) we obtain the
(fixpoint) equations

= 1 + {n (q()) [(1 - )1/2 + E k(l -Z2)/2

CD(z)l(z) 1/2 ] (X2 1 2)1/2 (23)

and

Xs , = - (XS - x*)2
- 7rx*(1 - x*)/2 + 7r flk(k - 2x)(1 - )/

k=l

+ 2x* In (q,(Z)){(x - 1)1/2 + (xs, - 1)/2} (24)

- In (q,(Z)) {xs(xs - 1)1/2 + Xs(Xs, 1)1/2}]

for the parameters xs, xs, on a Z-section, with x, satisfying (2) with q = q (Z).
We remark that for a low-drag body o, and p approach zero (cf. equations (19), (20)) so

that the outer solution (16) reduces to a lifting line. Also we see that o2 is proportional to
CD(Z) and co* to CL(Z). Thus everything is consistent and we may take (16) as outer solution
for all cases.

4. Iterations and discretization

The procedure for solving the problem can be summarized by the following scheme which
involves an inner iteration ((iii) below) to determine the parameters for the inner two-
dimensional flow and a outer iteration which determines the matching quantities y(Z) and
ql (Z):

(i) Choose a and the geometrical parameters.
(ii) Initialize cD(Z) = 0 and q(Z) = (1 + )1/2.

(iii) Solve the two-dimensional (parameter) problem in Z-sections using previous values of
coD(Z) and q(Z).

(iv) Compute y(Z) from (17) and q, (Z) from (22) (using (21) and (19)), hence ct(Z) from
(10).

(v) Repeat (iii) and (iv) until convergence is obtained.

The equations (23), (24) for x, Xs, and the side lengths in (iii) are solved using the iteration
procedure of [8]. This is done on a finite number of sections after discretization in Z as
discussed below.

193
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Following [2] it is convenient to approximate y(Z), Z = -cos S, with the Fourier sine
polynomial

N

y(-cos ) E Z A, sin(no), 0 S 6 it.
n=l

Since sin (nS) = sin () U_, (cos S), where U_ l is the Tchebychev polynomial of the second
kind, the Cauchy integral in (10) can be computed in closed form:

sin (nS)
oD(Z) = 4- nAn

(see [13], p. 785).
We consider sections corresponding to equally-spaced values of D so that the discrete Z

values are given by the Tchebychev nodes in [- 1, 1],

Zj = -cos (j/N), j = 1, .. , N- - 1.

The advantages of this are twofold: the nodes are denser near the ends, and the values of y
and the Fourier sine coefficients An are related by a discrete sine Fourier transform, so that
FFT algorithms can be applied if the number of sections is large. In fact we have:

N-1

y = Z A sin (nj7r/N),
n=l

N-I

% = e[4 sin (j7r/N)]- E nAn sin (nj~r/N),
n=l

2 N-I
A, = - yj sin (njrt/N),

where j, n = 1, ... , N - 1, N even, and yj = y(Zj), j = o(Z).
This numerical procedure can be efficiently implemented on a parallel computer, as it

happens in general with "strip methods" [10].

5. Numerical results

We have written a FORTRAN program to implement the iterations (ii)-(v) of the previous
section. In the inner iteration (iii), for each Zj, the parameters W, , . .. , in are deter-
mined, for fixed x,, x,, by the side lengths of the polygon as in [8], [5]. The determination
of xs, xs, from equations (23) and (24), which we may think of as

Xs = f(X s, xs) , Xs, = g(x s , X s ) ,
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is done by successive replacements with a relaxation parameter (Or,

Xs = (rf(XS, XS') + (1 - Or)Xs,

Xs, = O)rg(X, XS,) + (1 - Or)X,

where 0 < or < 2. The determination of or was done by experiment and depended in an
essential way on the section profile (as in [8]). Convergence was usually obtained in at most
three iterations.

A similar relaxation procedure was used to update the values of y(Z) and q, (Z) in the
outer iteration. The convergence criterion was given in terms of the section lift and drag
coefficients.

This code was applied to the prototype problems described below. The three-dimensional
drag and lift coefficients are defined by

CD = .1( Z)CD(Z)dZ, CL = J. (Z)CL(Z)dZ

where

c(Z) = c(Z)/fi_ c(Z)dZ, c(Z) = I(Z)11(O).

The numerical computations have been performed on the IBM 3081 at WSU in Wichita, and
on the VAX 8200 in Rome. In all cases 25 sections were used: Figure 1 shows, in a typical
case, that the results are stable when the number of sections varies in this range [22].

(I) Obliqueflat-plate airfoil with separation at the leading edge (supercavitating hydrofoil)

This problem has been extensively treated in the literature and experimental data are also
available. We restrict our attention here to rectangular plan forms, but we have considered
more general forms, as e.g., elliptic foils (see Figs. 6, 8 below).

For small angles of attack ot our results are in excellent agreement with the linearized
theory of Widnall [14]. As an example, Figure 2 shows values of CL versus a for ac = 10
degrees and aspect ratio AR = 4: experimental data by Kermeen [15] (squares) and Schiebe
and Wetzel [16] (black circles) are included.

For large values of x, our results are in reasonable agreement with those of Furuya
[2]: there are discrepancies which we think may be due to the influence of the free surface on
Furuya's results. As an example, Figure 3 gives CL and CD versus a at angle of attack

= 16.5 degrees and AR = 6:experimental data from [16] (black circles) and Furuya's
solution (dashed line) are included for comparison.

For wings of elliptic planform, the downwash turns out to be constant along the span as
it is for a fully wetted flow [1] (cf. Figs. 6, 8 below).

(I) Flow past a flat plate airfoil with jet separation from the upper surface

The corresponding two-dimensional flow has been treated in a classical paper by Chaplygin
and Lavrent'ev (see [17]). It was shown there that if separation occurs at the trailing edge,

195



P. Bassanini and A.R. Elcrat

.6 -

.4 -

.2 -

C

Cu

Fig. 1. Variation of C, and CD vs. number of sections for flat-plate wing of rectangular planform with partial
spoiler at a = 10 °, 6 = 600, AR = 6, a = 0.2.

.3-

.1 -

_-- .5-
El 3 C . 0 

C
L

.1 .2
Fig. 2. Lift coefficient vs. underpressure a for supercavitating hydrofoil (rectangular planform) at a = 100 and
AR = 4.

as we assume here, the lift agrees with that of a fully wetted wing (with Kutta condition at
the trailing edge).

We show in Table 1 the effect of aspect ratio on lift for rectangular and elliptic planform
(together with the constant downwash for the elliptic wing) at ot = 5 degrees, a = 0. Notice
that the value CL = 0.55 for a large aspect ratio agrees with the theoretical value 2r sin a.

10 20
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_ _
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_ _ .

.1

C
L
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D

.2

Fig. 3. Lift and drag coefficients vs.
a = 16.50, AR = 6.

underpressure a for supercavitating hydrofoil (rectangular planform) at

Table 1.

AR 1000 20 15 10 6 4

CL 0.555 0.551 0.537 0.518 0.481 - RECTANGULAR
CL 0.555 0.553 0.552 0.550 0.522 0.478 ELLIPTIC
aD 6.4 x 10-8 1.6 x 10- 2 2.9 x 10- 2 6.4 x 10-2 0.31 0.69

(III) Flat-plate wing (rectangular planform) with spoiler

We consider a 10% spoiler at 77.5% chord with a range of deflection angles 6. Both 50%
span spoiler (-0.5 < Z < 0.5) and a full span spoiler are reported at a = 10 degrees,
a = 0.2, and AR = 20 and 6 (Table 2, 6 in degrees). The results for aspect ratio AR = 20
(AR = e-') are shown in Figure 4, for both partial (P) and full spoiler (F), and compared
with the experimental data from [18] (squares). The figure gives incremental lift (changed of
sign), ACL = CL( 6 ) - CL(O), versus spoiler deflection 6. In a linear approximation, this

Table 2.

Partial Spoiler Full Spoiler

O C, CD CL CD

5 1.13 0.0011 1.07 0.0015
20 0.985 0.0043 0.685 0.0094
40 0.836 0.0128 0.310 0.0290 A
60 0.745 0.0210 0.070 0.050
80 0.695 0.027 - 0.060 0.065

120 0.693 0.028 -0.062 0.068

5 1.05 0.012 0.946 0.0156
20 0.905 0.015 0.608 0.0156
40 0.763 .023 0.278 0.030
60 0.671 .031 0.065 0.051
80 0.621 .038 -0.054 0.066

120 0.618 .039 -0.058 0.069

.2 -

.2-

.7
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.8

.4

A r

,40° 800

Fig. 4. Incremental lift vs. spoiler deflection for rectangular flat-plate wing with full and partial (50%) span
spoiler.

sloe

20'

*40*

60*

A 80

Fig. 5. Circulation y(Z) vs. span Z for a flat-plate wing of rectangular planform with partial (50%) span spoiler.

Fig. 6. Circulation y vs. Z for a flat-plate wing of elliptic planform with partial spoiler.
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Fig. 7. Downwash angle vs. Z for a flat-plate wing of rectangular planform with partial spoiler.

Ii
- I A

Fig. 8. Downwash aD vs. Z for a flat-plate wing of elliptic planform with partial spoiler.

.8

.4

* sigma-O.1

Osigim-0.2

Osigma-O.1

sigma-0.2

jW- 60'
Fig. 9. Lift coefficient vs. spoiler deflection for a flat-plate wing with full and partial spoiler at = 100, AR = 6,
and = 0.1, 0.2.
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quantity does not depend on thickness and camber of the foil (see [10]). The figure suggests
a possible origin of the discrepancy between theoretical and observed data.

Figs. 5-9 concern a flat-plate wing with partial spoiler (-0.5 < Z < 0.5) with values
= 10 °, AR = 6, a = 0.2, and a range of spoiler deflection angles from 5 = 10 to

6 = 80°. Figure 5 shows the circulation y(Z) vs. Z for a wing of rectangular planform, and
Figure 6 the circulation y(Z) for a wing of elliptic planform. The corresponding downwash
is given in Fig. 7 for rectangular and Fig. 8 for elliptic planform. Finally, Fig. 9 shows CL
vs. 6 for both partial spoiler (top curves) and full spoiler (bottom) at a = 0.1 and 0.2.

(IV) GA( W)-2 airfoil with partial spoiler

We consider here a wing with rectangular planform and a polygonal approximation (with
20 sides) of the GA(W)-2 section with a 10% spoiler at 77.5% chord and 50% span, at angle
of attack = 100, AR = 6 and a = 0.2.

Table 3 gives results for CL, CD and CL(Z), aD(Z) vs. Z for a few values of [22].
Here 10 sections are used. Corresponding values are plotted in Fig. 10. Agreement with
experiments from [18] is found with discrepancies (due to neglection of viscosity) less than
20%.

(V) Orthogonalflat plate (rectangular plan-form)

The important feature to observe here is the variation of drag with aspect ratio: CD should
decrease with aspect ratio [19, 20]. Table 4 compares values of CD(AR)/CD(oo) as computed
from our program (for a = 1) with experimental data from [19, 20]. The poor agreement of
our values with experiments is due to the fact that our outer solution does not include a
significant inflow along the back of the plate (cf. [20]). The agreement can be improved with
a correction factor which modifies q on sections near the ends. For instance, taking
q,(Z) = q (l) for sections having 0.75 < IZI 1 gives a good agreement with experiment.
It would be far more desirable to achieve this with an outer solution with inflow that can be
consistently matched. This is an important unsolved problem to which we plan to return in
future work.

* 60-dowrnash

l 80-downwash

* 60o-CL

080'-cL

Fig. 10. 2D lift coefficient CL(Z) and downwash aD(Z) vs. Z for a rectangular planform GA(W)-2 wing with
partial spoiler at deflections = 60°, 800 and = 10°, AR = 6, a = 0.2.
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Table 3.

6 200 400 60° 800

CL 1.152 0.931 0.800 0.725
CD 0.039 0.052 0.066 0.076

Z a, ( = 60 o) a, (6 = 800) CL(Z) (6 = 600) CL(Z) (6 = 800)

- 0.960 4.898 4.922 1.223 1.220
- 0.841 2.200 2.236 1.605 1.600
- 0.655 2.417 2.538 1.575 1.558
-0.500
-0.415 - 1.234 - 1.390 0.232 0.102
-0.142 - 0.304 - 0.364 0.140 0.006

0.142 - 0.304 - 0.364 0.140 0.006
0.415 - 1.234 - 1.390 0.232 0.102
0.500
0.655 2.417 2.538 1.575 1.558
0.841 2.200 2.236 1.605 1.600
0.960 4.898 4.922 1.223 1.220

Table 4.

AR oo 18 8 4 1

Experiment 1 0.70 0.64 0.60 0.57
Theory 1 0.99 0.985 0.971 0.898

6. Determination of near-wake underpressure

A relation between a and the Reynolds number

R = q, 1(O)/v

where v is the kinematical viscosity of the real fluid whose behavior is approximated by the
present inviscid model has been proposed by Tulin and Hsu [21] and extended in [8] to
transitional flows. This relation holds for fixed points of separation, and for a flat plate
orthogonal to the stream the parameters can be adjusted to give (see equation (12) of [8]):

750(1 + a)2 [CD(a)]-l[0.4a-2 (1 + )3/2 _ 1]- ', R > Rs(a)

80(1 + a)[CD(a)]-1 -2(1 + a)5 /2 , R Rs(a)
(25)

where

Rs(a) = 3120(1 + )' 2 a2[CD(a)]- '

and CD (a) is computed on the Z = 0 section. This relation can be inverted to give a = a(R),
a one-valued function [8]. Therefore the free parameter of the present theory can be chosen
to be R. Relation (25) shows that for high Reynolds numbers, above a threshold value R,,
a remains practically constant, so that CL, CD, . . . are insensitive to variations of R above
this threshold. This agrees with experimental data for flows past obstacles with fixed points
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of separation [19], and justifies the use of an inviscid wake model. For instance the-experi-
mental results of Table 4 were found for a range of values of R around 105, well above the
threshold, where a can be estimated to be around unity from the above (the denominator
in the first equation (25) approaches zero).
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